
History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Michael Käufl

July 11, 2011

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Outline

...1 History

...2 Basics

...3 Branching & Workflows

...4 Tips & Tricks

...5 Tools & Extensions

...6 Internals

...7 Further Reading

...8 Notes

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Outline

...1 History

...2 Basics

...3 Branching & Workflows

...4 Tips & Tricks

...5 Tools & Extensions

...6 Internals

...7 Further Reading

...8 Notes

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

History of Version Control Systems (VCS)

Local only:
1972 Source Code Control System (SCCS)
1982 Revision Control System (RCS)

Client-Server:
1970s CA Software Change Manager

(originally: CCC/Harvest)

1990 Concurrent Versions System (CVS)
2000 Subversion (SVN)

Distributed:
1990s? Sun WorkShop TeamWare

1998 BitKeeper
2001 GNU arch
2005 Git, Mercurial, Bazaar

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Git’s History
Background

Kernel development:
1991–2002 patches & archived files
2002–2005 BitKeeper

2005– Git
(since 2.6.12)

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Git’s History
Goals

...1 Take CVS as an example of what not to to.
There is no way to do CVS right.

...2 Support a distributed, BitKeeper-like workflow.

...3 Very strong safeguards against corruption, either
accidental or malicious.

...4 Very high performance.

1.-3. allowed only Monotone. 1.-4. allowed nothing.

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Git’s History
Characteristics

Strong support for non-linear development
Distributed development
Compatibility with existing systems/protocols
Efficient handling of large projects
Cryptographic authentication of history
Toolkit-based design
Pluggable merge strategies
Garbage accumulates unless collected
Periodic explicit object packing

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Data Storage
Others

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Data Storage
Git

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Outline

...1 History

...2 Basics

...3 Branching & Workflows

...4 Tips & Tricks

...5 Tools & Extensions

...6 Internals

...7 Further Reading

...8 Notes

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Basic Setup

$ git config --global user.name "John Doe"
$ git config --global user.email
johndoe@example.com
$ git config --global core.editor emacs
$ git config --global merge.tool vimdiff
$ git config --global color.ui auto

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Getting a Git Repository
Initializing a Repository

$ mkdir ∼/my-new-repo && cd ∼/my-new-repo
$ git init
Initialized empty Git repository in

/home/user/my-new-repo/.git/

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Getting a Git Repository
Cloning an existing Repository

$ git clone git://gitorious.org/qt/qt.git
my-qt-clone
Cloning into my-qt-clone...
remote: Counting objects: 615328, done.
remote: Compressing objects: 100% (123459/123459), done.
Receiving objects: 100% (615328/615328), 413.85 MiB |
1.11 MiB/s, done.
remote: Total 615328 (delta 497797), reused 604169
(delta 487253)

Resolving deltas: 100% (497797/497797), done.

Git natively supports ssh, git, http(s), ftp(s), and rsync protocols.

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Recording Changes to the Repository
File Status Lifecycle

unmodifieduntracked modifiedstaged

 emacs/vim/…
git add

git add

git commit

 git commit

 git rm

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

git commit --all

The all / a option tells the commit command to
automatically stage files that have been modified and
deleted.
New files you have not told git about are not affected.

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

git add --patch

$ git add -p LOREM
diff --git a/LOREM b/LOREM
index 7117488..3cf8771 100644
--- a/LOREM
+++ b/LOREM
@@ -1,3 +1,5 @@
+Some test text to illustrate git add --patch.
+
Lorem ipsum dolor sit amet, consectetur adipisici
elit, sed eiusmod tempor incidunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam,

Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]? y

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

git add --patch

@@ -8,7 +10,10 @@
dolore eu fugiat nulla pariatur. Excepteur sint
obcaecat cupiditat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

+Some test text.
+
Duis autem vel eum iriure dolor in hendrerit in

+some more text wae filled in here
vulputate velit esse molestie consequat, vel illum
dolore eu feugiat nulla facilisis at vero eros et
accumsan et iusto odio dignissim qui blandit

Stage this hunk [y,n,q,a,d,/,K,g,s,e,?]? s

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

git add --patch

Split into 2 hunks.
@@ -8,4 +10,6 @@
obcaecat cupiditat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

+Some test text.
+
Duis autem vel eum iriure dolor in hendrerit in

Stage this hunk [y,n,q,a,d,/,K,j,J,g,e,?]? y
@@ -11,4 +15,5 @@
Duis autem vel eum iriure dolor in hendrerit in

+some more text was filled in here
vulputate velit esse molestie consequat, vel illum
dolore eu feugiat nulla facilisis at vero eros et
accumsan et iusto odio dignissim qui blandit

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? n

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

git add --patch / git status

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..."to unstage)
#
modified: README
#
Changes not staged for commit:
(use "git add <file>..."to update what will be
committed)
(use "git checkout -- <file>..."to discard changes in
working directory)
#
modified: README

#

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Diffs

Show unstaged changes:
$ git diff

Show staged changes:
$ git diff --cached

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Removing, Renaming, and Moving Files

$ git rm filename
Removes a file from the working tree and the index.
$ git mv oldname newname

syntactic sugar
git tracks content, not files

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Ignoring Files

$ cat .gitignore
*.[oa]

*∼

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Undoing
Unstaging & Unmodifying

Follow the instructions of git status.
Unstaging a staged file:
$ git reset HEAD filename

Unmodifying a modified file:
$ git checkout -- filename

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Undoing
Changing Your Last Commit

$ git commit -m ’initial commit’
$ git add forgotten_file
$ git commit --amend

Warning: Do not change shared commits!

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Tagging
Lightweight Tags

$ git tag v1.4-lw

like a branch that doesn’t change
designed as temporary tags

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Tagging
Annotated Tags

$ git tag -a v1.4 -m ’my version 1.4’
$ git show v1.4

checksummed
contain the tagger’s name, e-mail adress, and the date
tagging message
can be signed and verified with GPG

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Tagging
Signed Tags

$ git tag -s v1.5 -m ’my signed 1.5 tag’
You need a passphrase to unlock the secret key for
user: "John Doe <johndoe@example.com>"

4096-bit DSA key, ID 12345678, created 2011-07-11

Verify a signed tag:
$ git tag -v v1.5

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Tagging
Sharing Tags

$ git push origin --tags

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Outline

...1 History

...2 Basics

...3 Branching & Workflows

...4 Tips & Tricks

...5 Tools & Extensions

...6 Internals

...7 Further Reading

...8 Notes

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

What is a Branch?

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

What is a Branch?

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

What is a Branch?

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Branching

Create a branch:
$ git branch iss53

Switch to a branch:
$ git checkout iss53

Delete a branch:
$ git branch -d iss53

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Merging

$ git checkout master
$ git merge iss53

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Merging

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Merging

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Merging
Conflicts

$ git merge iss53
Auto-merging lorem.txt
CONFLICT (content): Merge conflict in lorem.txt

Automatic merge failed; fix conflicts and then commit

the result.

$ editor lorem.txt / $ git mergetool
$ git add lorem.txt
$ git commit

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Branching Model
Ti
m
e

release branches masterdevelop hot!xes
feature

branches

Feature
for future

release

Tag

1.0

Major
feature for

next release

From this point on,
“next release”

means the release
after 1.0

Severe bug
!xed for

production:
hot!x 0.2

Bug!xes from
rel. branch

may be
continuously
merged back
into develop

Tag

0.1

Tag

0.2

Incorporate
bug!x in
develop

Only
bug!xes!

Start of
release

branch for
1.0

Author: Vincent Driessen
Original blog post: http://nvie.com/archives/323
License: Creative Commons

http://nvie.com/posts/a-successful-git-branching-model/

http://nvie.com/posts/a-successful-git-branching-model/

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Rebasing

Warning: Rebasing changes the history! Do not change shared
commits!

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Rebasing

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Rebasing

$ git rebase --onto master server client

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Rebasing
Interactive

$ git rebase --interactive HEAD∼4
pick 96c8173 earliest commit message
pick 415a6a6 some changes
pick b0996fb some changes

pick d945913 latest commit message

pick: use commit
reword: use commit, but edit the commit message
edit: use commit, but stop for amending
squash: use commit, but meld into previous commit
fixup: like ’squash’, but discard this commit’s log message
exec: run command (the rest of the line) using shell

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Remote Branches

taken from http://nvie.com/posts/a-successful-git-branching-model/

http://nvie.com/posts/a-successful-git-branching-model/

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Remote Branches
Fetch & Pull

Get information from remotes:
$ git fetch origin

Fetch from a remote and merge:
$ git pull origin

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Remote Branches
Push

$ git push origin master
$ git push origin develop:unstable
$ git push origin :unstable

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Tracking Branches

Tracking branches are local branches that have a direct
relationship to a remote branch.
$ git checkout -b develop origin/unstable
$ git pull
$ git push

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Workflows
Centralized Workflow

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Workflows
Integration-Manager Workflow

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Workflows
Dictator and Lieutenants Workflow

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Outline

...1 History

...2 Basics

...3 Branching & Workflows

...4 Tips & Tricks

...5 Tools & Extensions

...6 Internals

...7 Further Reading

...8 Notes

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

git svn
Clone

$ git svn clone http://server/repo
--trunk=<trunk_subdir>
--tags=<tags_subdir>
--branches=<branches_subdir>

$ git svn clone http://server/repo --stdlayout

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

git svn
Branching

$ git svn branch -m ’Branch for fixing issue
53’ iss53
$ git checkout -b local/iss53 iss53

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

git svn
Committing to SVN

$ git svn rebase
$ git svn dcommit

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

git svn
Merging

While git svn can track copy history (including
branches and tags) for repositories adopting a
standard layout, it cannot yet represent merge history
that happened inside git back upstream to SVN users.
Therefore it is advised that users keep history as linear
as possible inside git to ease compatibility with SVN.

http:

//www.kernel.org/pub/software/scm/git/docs/git-svn.html

http://www.kernel.org/pub/software/scm/git/docs/git-svn.html
http://www.kernel.org/pub/software/scm/git/docs/git-svn.html

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Merging

$ git checkout master
$ git merge --squash local/iss53
$ git commit

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Initial Push to Server

$ ssh user@server
$ cd repos
$ mkdir new-repo.git && cd new-repo.git
$ git init --bare
$ exit

$ cd local-repo
$ git remote add origin
ssh://user@server:22/home/user/repos/new-repo.git
$ git push origin master

$ git config branch.master.remote origin
$ git config branch.master.merge
refs/heads/master

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Outline

...1 History

...2 Basics

...3 Branching & Workflows

...4 Tips & Tricks

...5 Tools & Extensions

...6 Internals

...7 Further Reading

...8 Notes

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Shell Prompt

+-: git repository
master: current branch
staged files
modified files
untracked files
3: commits ahead of origin/master

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

gitk

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

gitweb

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Patchwork

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

GitHub

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

git-annex

git-annex allows managing files with git, without checking the
file contents into git.
It is designed for archivists and nomads.

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

bup
It backs things up

A git-based backup solution.

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

etckeeper

Etckeeper puts system configuration (/etc) under version
control.

Links:

Linux Magazin

http://kitenet.net/~joey/code/etckeeper/

http://www.linux-magazin.de/Online-Artikel/Etckeeper-stellt-Systemkonfiguration-unter-Versionskontrolle
http://kitenet.net/~joey/code/etckeeper/

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Outline

...1 History

...2 Basics

...3 Branching & Workflows

...4 Tips & Tricks

...5 Tools & Extensions

...6 Internals

...7 Further Reading

...8 Notes

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Git Implementation

In many ways you can just see git as a filesystem – it’s
content-addressable, and it has a notion of versioning,
but I really really designed it coming at the problem
from the viewpoint of a filesystem person (hey, kernels
is what I do), and I actually have absolutely zero
interest in creating a traditional SCM system.

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Data Structures

a mutable index that caches information about the working
directory and the next revision to be committed
an immutable, append-only object database

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Data Structures
Object Database

Types of objects:
a blob is the content of a file without any metadata
a tree is the equivalent of a directory; contains a list of
filenames (snapshot of the source tree)
a commit links tree objects together into a history; contains
the name of a tree object, a timestamp, a log message and
the names of the parent commits
a tag is a container that contains a reference to another
object and additional meta data

Each object is identified b a SHA-1 hash.

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Outline

...1 History

...2 Basics

...3 Branching & Workflows

...4 Tips & Tricks

...5 Tools & Extensions

...6 Internals

...7 Further Reading

...8 Notes

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Why Git is Better than X?

Linux Kernel repo needs 988 MB disk space:
488 MB .git
500 MB code, doc,

More: http://whygitisbetterthanx.com/

http://whygitisbetterthanx.com/

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Books

Pro Git
The Git Community Book
Git Magic

http://progit.org/book/
http://book.git-scm.com/
http://www-cs-students.stanford.edu/~blynn/gitmagic/

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Tutorials & Co.

official git tutorial
everyday git with 20 commands or so
git reference

http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
http://www.kernel.org/pub/software/scm/git/docs/everyday.html
http://gitref.org/

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Videos

Linus @ Google (what git isn’t)
Randal Schwartz @ Google (what git is)
git tutorial talk

http://www.youtube.com/watch?v=4XpnKHJAok8
http://www.youtube.com/watch?v=8dhZ9BXQgc4
http://excess.org/article/2008/07/ogre-git-tutorial/

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Thank you!

Questions?

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Outline

...1 History

...2 Basics

...3 Branching & Workflows

...4 Tips & Tricks

...5 Tools & Extensions

...6 Internals

...7 Further Reading

...8 Notes

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

Notes

Some links:
http://git-scm.com/

http://www.tfnico.com/presentations/
git-and-subversion

http://git-scm.com/
http://www.tfnico.com/presentations/git-and-subversion
http://www.tfnico.com/presentations/git-and-subversion

History Basics Branching & Workflows Tips & Tricks Tools & Extensions Internals Further Reading Notes

License

All pictures except for those on slides ’Branching Model’ and
’Remote Branches’ are either self made or taken from the pro
git book. They are all licensed under cc-by-sa.

The other two pictures are taken from nvie.com.

Most of the text content is based on the pro git book and
licensed under cc-by-sa. The rest are cites from the git
manpages, wikipedia or is based on answers on
stackoverflow.com.

nvie.com
stackoverflow.com

	History
	Basics
	Branching & Workflows
	Tips & Tricks
	Tools & Extensions
	Internals
	Further Reading
	Notes

